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Abstract
Phytoplankton biomass, as chlorophyll (Chl) a, and net ecosystem production (NEP), were modeled using artificial neural

networks (ANNs). Chl a varied seasonally and along a saline gradient throughout the Neuse River (North Carolina). NEP was

extremely dynamic in the Trout River (Florida), with phototrophic or heterotrophic conditions occurring over short-term

intervals. Physical and chemical variables, arising from meteorological and hydrological conditions, created spatial and/or

temporal gradients in both systems and served as interacting predictors for the trends/patterns of Chl a and NEP. ANNs

outperformed comparable linear regression models and reliably modeled Chl a concentrations less than 20 mg L�1 and NEP

values, denoting the apparent non-linear interactions among abiotic and indicator variables. ANNs underestimated Chl a

concentrations greater than 20 mg L�1, likely due to the periodicity of data acquisition not being sufficient to generalize system

variability, the designated ‘lag’ effect for variables not being adequate to portray estuarine flow dynamics, the exclusion of (one

or more) variables that would have improved prediction, and/or an unrealistic expectation of network performance. Variables

indicative of meteorological and hydrological forcing and/or proxy measurements of phytoplankton had the greatest relative

impact on prediction of Chl a and NEP. Except for their predictive capability, ANNs might appear to be of limited value for

ecological applications and problem solving; interpreting the absolute impact of and/or interacting relationships among network
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variables is intrinsically difficult. Statistical methods or ‘rule extraction’ algorithms that convey comprehensible network

interpretation are needed prior to the routine use of ANNs in programs assessing and/or forecasting the response of biotic

indicators to perturbation or for a means to discern estuarine function.

# 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Characterization based on ecological indicators is

central to assessing the status or ‘health’ of coastal

systems in response to anthropogenic stressors and/

or natural disturbances. The chlorophyll (Chl) a

concentration of a water column is a universally

accepted indicator for total phytoplankton biomass

and a useful estimate for a population’s response to

changing environmental/endogenous variables and/

or system-level eutrophication (e.g. Millie et al.,

1993; Harris, 1994, 1996; Paerl et al., 2003; Soyupak

and Chen, 2004). Net ecosystem production (NEP)

represents the balance between production and

respiration and as such, is a proxy for system

trophic state; positive values indicate that auto-

chthonous production of organic matter dominates

(phototrophy) whereas negative values signify that

allochthonous sources are most influential (hetero-

trophy; see Odum, 1956; Swaney et al., 1999;

Caffrey et al., 1998; Smith and Hollibaugh, 1993;

Caffrey, 2003, 2004).

It is imperative that we not only understand how

coastal systems function, but also predict how they

will be affected by change (National Biological

Information Infrastructure; http://www.nbii.gov/

index.html). However, our ability to predict popula-

tion- and/or system-level response to stressors and/or

disturbances within estuarine waters is poor, due in

part to the inability to both functionally link and

conceptually model the interactions between abiotic

and biotic variables (Paerl, 1988; Rudek et al., 1991;

Glibert et al., 1995; Sigua et al., 2000; Cloern, 2001;

Paerl et al., 2005). Clearly, accurate assessment of

chronic and episodic perturbation requires the

identification, quantification, and interpretation of

integrative indicators capable of coupling population/

community structure to ecosystem integrity (Commit-

tee on Environmental and Natural Resources, 1997;
Bortone, 2005; Jordon and Smith, 2005; Paerl et al.,

2005).

The ‘‘scaling up’’ of indicator data for forecasting

the consequences (and controls) of estuarine perturba-

tion requires diverse and robust modeling approaches

(after Barnes and Mazzotti, 2005; Marshall, 2005;

Paerl et al., 2005). Although deterministic models

(based on physical/chemical/biological relationships)

have a wide range of applicability and can cope with

deviations within the system modeled, they often are

complex, require extensive data sets, and contain

numerous parameters whose values are uncertain and/

or require initialization (Maier et al., 1998; Murray

and Parslow, 1999; Walsh et al., 2001). Linear and

non-linear statistical models approximate data rela-

tionships solely through mathematical functions and

as such, require no theoretical ‘biological guidelines’.

Due to the non-linear and often stochastic interactions

that commonly exist among patterns and processes in

aquatic systems (see Smith et al., 1988; Harris, 1994;

Mazumder, 1994), artificial neural networks (ANNs)

have become increasingly popular in modeling

phytoplankton abundance and production (e.g. Reck-

nagel et al., 1997; Barciela et al., 1999; Maier et al.,

1998; Scardi and Harding, 1999; Olden, 2000;

Richardson et al., 2002; Gurbuz et al., 2003; Lee

et al., 2003). ANNs are non-linear parametric models

that reproduce correlated patterns between/among

variables through repetitive data processing. In

contrast to linear models, they do not require a known

probability distribution of variables and easily

accommodate large ‘noisy’ data sets reflecting

seasonal and cyclic variation (Smith and Mason,

1997; Maier et al., 1998; Richardson et al., 2002).

Although ANNs show promise for modeling

ecological indicators within dynamic coastal waters,

their application is relatively new and requires

validation and interpretation across diverse systems.

Here, ANNs modeled Chl a and NEP in distinct

http://www.nbii.gov/index.html
http://www.nbii.gov/index.html
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estuaries within the southeastern USA. Specifically,

we: (1) identified spatial/temporal patterns of abiotic

predictor variables, Chl a, and NEP; (2) developed and

validated networks for realistic prediction of Chl a

concentrations, NEP values, and phototrophic/hetero-

trophic classifications; and (3) elucidated the (relative)

importance of predictor variables within the networks.

The potential usefulness and shortcomings of using

ANNs for modeling estuarine indicators within coastal

assessment programs also are discussed.
2. Methods

2.1. Study sites and data acquisition

The Neuse River flows through ca. 300 km of North

Carolina’s most productive and rapidly expanding

urban, industrial and agricultural regions before

emptying into Pamlico Sound, the lower portion of

the Albermarle–Pamlico Estuarine System (Fig. 1).

Changing land-use activities in the watershed coupled

with major climatic perturbations have generated

various non-point source nutrient and sediment inputs
Fig. 1. Location of sampling stations (filled squares) along the length of

riverine and upper reach and the mesohaline, mid- and lower-reaches of th

‘downstream’ from most ‘upstream’ site, 0 km. Inset figure places study
into the estuarine portion of the Neuse River,

ultimately promoting episodic proliferation of nui-

sance/harmful algal blooms, hypoxia/anoxia events,

and alterations in biogeochemical cycling and micro-

bial, invertebrate, and fish community structure and

function (Pinckney et al., 1997, 1999; Paerl et al.,

2001, 2003, 2005; Cooper et al., 2004). From April

1994 through December 2003, water-quality data

(Table 1) were acquired bi- to tri-weekly along the

length of the estuary at (up to) 12 sites, ranging from

freshwater to mesohaline (Fig. 1).

The Trout River is a mesohaline tributary of the

lower St. Johns River, a 160-km estuarine system that

drains ca. 6000 km2 of urban/industrial, agricultural,

and forested lands of northeastern Florida prior to

emptying into the Atlantic Ocean (Fig. 2). This entire

system has undergone extensive eutrophication and

water-quality degradation, largely due to point and

non-point source nutrient/toxic chemical loading.

Alterations in water-column salinity through tidal

exchange and variable freshwater inflows also

dramatically influence the chemical/biological nature

of the system (Pigg et al., 2004). From May 2001

through May 2003, select meteorological and in situ
the Neuse River estuary. Dashed lines differentiate the oligohaline,

e estuary (see Section 3). Values for each station represent distance

area relative to North Carolina (USA).
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Fig. 2. Location of the autonomous sampling platform (filled circle) within the Trout River, a major tributary of the lower St. Johns River

estuarine system. Inset figure places study area relative to northeast Florida (USA).

Table 1

Methodology or instrument for acquiring physical, chemical, and biological data via invasive and autonomous sampling in the Neuse and Trout

Rivers, respectively

Variable (abbreviation, units) Neuse River Trout River

Dissolved oxygen (DO, mg L�1) Hydrolab YSI 6600

Dissolved oxygen saturation (DO%, %) Hydrolab YSI 6600

Conductivity (Cond, mS cm�1) Hydrolab YSI 6600

Salinity (PSU, practical salinity units) Hydrolab YSI 6600

Temperature (Temp, 8C) Hydrolab YSI 6600, HMP45C

pH (pH, [H�1]) Hydrolab YSI 6600

Turbidity (Turb, NTU) – YSI 6600

Chlorophyll a (Chl a, mg L�1) Pinckney et al. (1996) –

Fluorescence (Fluor, as Chl a mg L�1) – WETstar Fluorometer

Wind speed (Wnd Spd, kn h�1) – MET one windset

Wind direction (Wnd Dir, 8) – MET one windset

Barometric pressure (BP, mmHg) – CS barometric pressure sensor

Precipitation (Precip, mm) – RM Young rain gauge

Photosynthetic active radiation (PAR, mmol m�2 s�1) Li-COR 4b spherical sensor Licor quantum sensor

Light attenuation (Kd, m�1) Wetzel (2001) Wetzel (2001)

Water velocity (Vel, cm s�1) – Sontek Argonaut-SL

Water depth (Depth, m) – Sontek Argonaut

Nitrate + nitrite (NOx, mg L�1) Jones (1984) Strickland and Parsons (1972)

Ammonia (NH4, mg L�1) Solorzano (1969) Strickland and Parsons (1972)

Phosphate (PO4, mg L�1) Strickland and Parsons (1972) Strickland and Parsons (1972)
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water-quality data (Table 1) were acquired hourly

from mid-channel, sub-surface waters by an autono-

mous instrument platform (Fig. 2). Large concentra-

tions of dissolved humic materials were present and

often dominated water attenuation (see Gallegos,

2002) throughout the lower St. Johns River, including

the Trout River. Consequently, accurate Chl a

concentrations could not always be inferred via in

situ fluorescence and fluorescence values were used

only to surmise trends of phytoplankton biomass.

NOx, NH4, and PO4 concentrations also were

determined within sub-surface and bottom waters

over 2-week periods during Spring (March/April),

Summer (July), and Fall (November/December) from

2000 to 2002 (Table 1). NEP values were calculated

from diel, DO concentrations (Caffrey, 2003, 2004).

To account, in part, for changing water depth (due to

tidal cycles and flow alterations), the mean depth for

each sampling interval was used in calculating hourly

DO flux. Additionally, the water masses flowing past

the sensor were assumed homogeneous (after Caffrey,

2003, 2004). Because NEP values represent the net

oxygen flux over a daily interval, diel means of abiotic

predictor variables were calculated.

2.2. Statistical analyses

The inherent patterns and trends of abiotic

variables and their (interacting) relationships to Chl

a concentrations and NEP values were determined

prior to network development. The associations

between/among variables within the Neuse and Trout

River were identified using Pearson Product Moment

Correlation Coefficients (SYSTAT 10, 2000) to

ascertain the adequacy of a variable for model

inclusion and/or identify redundant, correlated vari-

ables. Data were square root- or logarithmic-trans-

formed (where appropriate) to increase the variance

and homogeneity of normalcy. Principal component

analysis, utilizing Euclidean distances, characterized

sampling sites and dates with respect to physical and

chemical variables throughout the Neuse and Trout

Rivers (Clarke and Gorley, 2001; Clarke and Warwick,

2001). For annual and seasonal characterization of the

Neuse River (based on 30-year temperature regimes;

after Litaker, 1986), variable means were calculated

as: Winter (December to February), Spring (March to

May), Summer (June to September), and Fall (October
to November). An analysis of variance (ANOVA;

SYSTAT 10, 2000) assessed spatial/temporal differ-

ences among mean Chl a concentrations.

Because physical/chemical/biological conditions

at a ‘downstream’ estuarine site reflect collective

conditions at both that site and ‘upstream’ sites and

algal growth often is temporally ‘lagged’, exclusion of

a temporal and/or spatial sequence within the set of

variables may impair the predictive ability of a model

(see Duarte, 1990; Pinckney et al., 1997; Maier et al.,

1998; Olden, 2000). For that reason, variables were

temporally and/or spatially ‘lagged’ (for the Neuse

River, immediately upstream from a site and 2–3

weeks prior to a sampling date and for the Trout River,

the previous sampling day), thereby increasing (up to)

two-fold the number of potential predictor variables

within each data vector. These ‘lag’ effects were

selected to best typify estuarine residence time and/or

tidal cycles in the Neuse and Trout Rivers, respec-

tively.

2.2.1. Artificial neural networks

Multi-layer perceptrons using a back-propagation

learning algorithm were constructed using NeuroSo-

lutions v4.32 software (NeuroDimension, Inc.; Gai-

nesville, FL, USA) to model Chl a concentrations,

NEP values, and phototrophic/heterotrophic classifi-

cations:

½Chl a�=NEP

¼ ffWP1;P3
½ f ðWX1;P1

X1 þWX2;P1
X2 þ � � �

þWXi;P1
Xi þ e1Þ�gþ ffWP2;P3

½ f ðWX1;P2
X1

þWX2;P2
X2 þ � � � þWXi;P2

Xi þ e2Þ�g

þ ffWP j;P3
½ f ðWX1;P j X1 þWX2;P j X2 þ � � �

þWXi;P j Xi þ e jÞ�g (1)

where X1,2,. . .,i are candidate predictor variables,

P1,2,3,. . .,j are processing elements (PEs), and

WX1;2;...;i;P1;2;...; j
are scalar weights, and e1,2. . .,j is the

error (Fig. 3; after Principe et al., 2000).

Briefly, predictor variables were normalized to

match the range of the hidden layer’s (non-linear)

transfer functions (see Goh, 1995; Olden and Jackson,

2002); because hyperbolic tangent functions were

used in PEs of the hidden layer for both function
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Fig. 3. Schematic of a feed-forward, multi-layer perceptron with back-propagation, depicting the interaction among input variables (X1,. . .,i),

processing elements (P1,. . .,j) in the hidden layer(s), synaptic weights (wX1;...;i ;P1;...; j
and wP1;...; j ;P3

), and output parameters (Y1,. . .,k). For each

complete presentation of the data set to the network, modeled chlorophyll a concentrations or net ecosystem production values were: (1) ‘fed

forward’ for comparison to the desired response, from which (2) mean-square error was computed. The error (3) then was ‘back-propagated’ and

the synaptic weights adjusted (see Section 2).
approximation and classification models, data were

scaled from �1 to 1. Normalized values for each data

vector (hereafter, an ‘exemplar’) were multiplied by

scalar weights prior to getting summed and processed

by multiple transfer functions within the hidden layer.

Values generated for hidden-layer PEs then were

multiplied by scalar weights prior to getting summed

and processed within an output layer to produce a

(modeled) output value. Modeled values were scaled

to match the chosen transfer function(s) of the output

layer; because function approximation and classifica-

tion models produced output either as a continuous

value or a single category, values were scaled to an

infinite data range or from 0 to 1, respectively. The

modeled value then was ‘fed forward’ and compared

to the desired (measured) response, from which the

mean-square error (MSE) was computed. After

presentation of all exemplars within a data set

(hereafter, an ‘epoch’), the error was ‘back-propa-

gated’ to the network and the weights were

incrementally adjusted, through gradient descent with

momentum learning, in the direction of the minimum

error among PEs (Fig. 3; Principe et al., 2000; Olden,

2000; Lee et al., 2003). In this manner, the weights
stabilized over multiple epochs (as error minimized)

and modeled values increasingly approximated mea-

sured values.

For training, 60% of all exemplars were repeatedly

presented to the network (typically 1000–2000

epochs, repeated at least three to five times), with

weights adjusted after each epoch to minimize the

MSE. To accelerate ‘learning’ and ensure the greatest

probability of network convergence to the global

minimum, learning and momentum rates and step-

sizes were allowed to vary during iterative training

(after Barciela et al., 1999; Principe et al., 2000;

Olden, 2000; Olden and Jackson, 2002; Lee et al.,

2003). In an attempt to provide an unbiased estimation

of a network’s predictive success concurrent with

training and ensure optimal network design, the MSE

also was computed for a ‘cross-validation’ data sub-set

(containing 15% of the exemplars; after Olden, 2000;

Olden and Jackson, 2002; Gurbuz et al., 2003).

Network training was terminated prior to the

designated number of epochs if the MSE within the

training or cross-validation data sets fell below 0.01 or

began to increase (i.e. an indication that the network

began to ‘over-train’, thereby memorizing the data;
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see Karul et al., 2000; Gurbuz et al., 2003). Testing or

‘‘hind-casting’’ involved applying a trained network,

with frozen weights to a data sub-set (25% of all

exemplars) not used in training and cross-validation.

Training, cross-validation and testing sub-sets were

selected randomly.

Sensitivity analyses and genetic training optimized

the choice of input variables and the number/type of

input variables, momentum rates/step-sizes, and/or the

number of PEs (in the hidden layer), respectively. The

resulting models were trained and tested, prior to final

selection of the optimal model. Briefly, sensitivity

analysis provided an approximate measure of the

relative importance among predictor variables by

determining the variation of Chl a or NEP in response

to the variation of individual predictors across a

training set. Each predictor variable was varied by a

defined number of standard deviations (both +/�)

from its mean while all other variables remain fixed (at

their respective means; Principe et al., 2000). The Chl

a concentration or NEP value then was computed (for

all deviations) and this process repeated for each

variable, after which the most relevant variables (i.e.

those creating the greatest variation of the modeled

parameter) were identified for network modification.

For genetic training, 50–100 populations of net-

works were randomly created, trained and evaluated to

determine the best fitness (based on the minimum

MSE achieved). Attributes of the better-performing

networks (i.e. variables, momentum rates, etc.) were

combined (using one-point crossover), ‘mutated’

(using a probability of 0.01), and selected (Roul-

ette-based on Rank) to create a new generation of

network populations, which were trained and eval-

uated. The best attributes again were combined,

‘mutated’, and selected, creating yet another network

generation. In this manner, the better-performing

attributes passed along from one ‘generation’ of

networks to the next (typically 100–200 tested), with

the optimal-performing network eventually ‘evolving’

(see Schaffer et al., 1992; Jones, 1993; Montana,

1995).

Network interpretation diagrams (NIDs) illustrated

the magnitude/direction of synaptic weights among

input-hidden-output layers after training (Aoki and

Komatsu, 1999; Chen and Ware, 1999; Özesmi and

Özesmi, 1999; Olden, 2000; Olden and Jackson,

2002). Greater weight values indicated more impor-
tance in prediction (compared to lesser values)

whereas negative values imposed an inhibitory effect

(compared to excitatory effect of positive values) on

PEs. Because all ANNs used two weight layers (see

Fig. 3), positive effects of variables were depicted by

positive input-hidden and positive hidden-output

weights, or negative input-hidden and negative

hidden-output connection weights. Variable interac-

tion was identified by contrasting weights entering the

same PE (from Olden, 2000; Olden and Jackson,

2002). The relative share of prediction associated with

input variables was determined from final weight

values using an algorithm proposed by Garson (1991),

and modified by Milne (1995) and Gedeon (1997).

2.3. Regression modeling

To compare results of ANNs with that of linear

models, multiple linear regression (MLR) models

incorporating identical variables as ANNs and using

both non-transformed and transformed values were

constructed from training data sets:

½Chl a�=NEP ¼ b0 þ b1X1 þ b2X2 þ b3X3

þ � � � þ biXi þ e (2)

where X1,. . .,i are the predictor variables, b0,. . .,i are

regression parameters (intercept/slopes of the regres-

sion line), and e is the error (SYSTAT 10, 2000).

Regression equations were applied to test data sets,

with the (squared) error of data vectors for MLRs and

ANNs calculated. A paired t-test (SYSTAT 10, 2000)

determined whether the mean of the differences for

paired MSEs between ANNs and comparable MLRs

differed from zero.
3. Results

3.1. Patterns/trends of abiotic/biotic variables

3.1.1. Neuse river estuary

Spatial and temporal groupings of sampling sites,

based on seasonal means of physical/chemical

variables, were evident. The initial two principal

components of the PCA included descriptors indica-

tive of hydrological and meteorological forcing and

together explained ca. 81% of the total variability;
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PSU, Kd, and NOx and NH4 concentrations and Temp

and DO concentration explained ca. 52 and 28% of the

variability within the first and second PC, respectively.

From this ordination, a gradient from the oligohaline

riverine- and upper-reaches to the mesohaline mid-

and lower-reaches was evident (Fig. 4A). Seasonal

groupings of sampling sites also were apparent

(Fig. 4B); summer and winter sampling sites were

distinct from one another whereas spring and fall sites

were relatively similar. PSU and Chl a concentrations

varied seasonally and along the oligo-/mesohaline

gradient, with a pronounced temporal/spatial interac-

tion ( p � 0.001, n = 2022). PSU maximized within

the lower estuary, with the greatest values occurring

during summer (Fig. 4C). Chl a concentrations

increased along the oligo- to mesohaline gradient,

with the least and greatest concentrations occurring

within the riverine- and mid-estuary reaches and

during summer and winter, respectively (Fig. 4D).
Fig. 4. Two-dimensional principal components (PCs) ordination of Neuse

Stations denoted as a function of (A) estuarine reach and (B) season (refer to

explained by the corresponding PC (see Section 3). Chlorophyll a conc

‘upstream’ site (refer to Fig. 1) and (D) sampling month. Data are means
3.1.2. Trout River

Temporal variability among physical/chemical

variables occurred, reflecting both estuarine flow

and temperature regimes of northeast Florida

(Fig. 5A). The initial two PCs of the PCA included

descriptors indicative of hydrological and meteorolo-

gical forcing and together explained ca. 64% of the

total variability; PSU and NOx and PO4 concentra-

tions, and temperature and NH4 concentrations

explained ca. 37 and 27% of the variability within

the first and second PC, respectively. From this

ordination, a seasonal continuum was apparent. NEP

values from May 2001 to May 2003 indicated that

production and respiration processes were variable

within the Trout River, resulting in highly dynamic

trophic conditions (Fig. 5B). From this, the Trout

River appeared phototrophic ca. 66, 46, and 31% of

the days during which diel oxygen flux were assessed

during 2001 (102 days), 2002 (296 days), and 2003
River sampling stations based on physical and chemical parameters.

Fig. 1). Percentages along axes represent percent of total variability

entrations as a function of (C) distance ‘downstream’ from most

� standard error (n = 52–220).



D.F. Millie et al. / Ecological Indicators 6 (2006) 589–608 597
(141 days), respectively. NEP was highly segmented

over short intervals (typically 3–8 days, Fig. 5C).

3.2. Development and validation of ANNs

Numerous multi-layer perceptrons were developed

to model Chl a concentrations, NEP values, and
Fig. 5. (A) Two-dimensional principal components (PCs) ordina-

tion of Trout River sampling dates based on physical and chemical

parameters. Dates denoted as a function of season. Percentages

along axes represent percent of total variability explained by the

corresponding PC (see Section 3). Values of net ecosystem produc-

tion (NEP), derived from diel dissolved oxygen concentration, from

(B) May 2001 to May 2003 and (C) 31 May to 29 July 2002. Dashed

lines within each panel indicate the positive (phototrophic)–negative

(heterotrophic) threshold.
phototrophic/heterotrophic classifications. Prelimin-

ary experimentation with networks possessing PCA

and radial-basis function architecture (see Principe

et al., 2000) and incorporating varied numbers of PEs

and hidden layers, did not improve on results.

3.2.1. Neuse River

An ANN, utilizing the 15 best candidate physical/

chemical variables comprised of one-hidden layer

with seven PEs, was trained and cross-validated on

data sub-sets, prior to being applied to test data. Values

of MSE for both the training and cross-validation data

sub-sets approached zero (Fig. 6A), indicating that the

network had succeeded in ‘training’ the model. Upon

applying the network to a testing data sub-set,

modeled concentrations mirrored the general trend

in Chl a dynamics (r = 0.64, p � 0.0001). However,

modeled data dramatically underestimated measured

data, particularly at Chl a concentrations greater than

ca. 20 mg L�1 (Fig. 6B). A sensitivity analysis

(Fig. 6C) denoted Temp, PSU, Kd, NOx, NH4
+,

PO4
3�, and DO to be the most important variables for

predicting Chl a. An ANN, utilizing these variables

and comprised of one-hidden layer with 14 PEs, was

successfully trained and cross-validated, with only a

slight improvement in modeling Chl a concentrations

(r = 0.66, p � 0.0001; Fig. 6D). A genetically trained

ANN, utilizing the variables, Temp, PSU, Kd, NOx, L-

NOx, NH4, L-NH4, PO4, DO, and L-Chl a, and

comprised of one-hidden layer with 11 PEs, did not

improve modeling of NEP (r = 0.67, p � 0.0001; data

not shown).

3.2.2. Trout River

An ANN, utilizing the best 21 candidate meteor-

ological/physical/chemical variables and comprised

of one-hidden layer with four PEs, was trained and

cross-validated on data sub-sets, prior to being applied

to test data. The network provided a good estimate of

modeled NEP values from calculated values (r = 0.79,

p � 0.0001; data not shown). A sensitivity analysis

(Fig. 7A) denoted the variables, PAR, Depth, Fluor,

DO%, Precip, L-PAR, L-Depth, L-Temp, L-Fluor, L-

DO%, and L-NEP, to be most important for predicting

NEP. An ANN, comprised of one-hidden layer with

six PEs and utilizing these 11 variables, was

successfully trained and cross-validated, with only a

slight improvement in modeling NEP values (r = 0.82,
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Fig. 6. (A) Mean-square error associated with training and cross-validation data sub-sets during training of an artificial neural network (ANN)

incorporating all candidate variables for the Neuse River (see Section 3). Data are means, n = 3. (B) Modeled chlorophyll (Chl) a concentrations

from an ANN incorporating all candidate variables as a function of measured concentrations. The dashed line represents a 1:1 relationship. The

solid line and corresponding statistical information represent the ‘best’ fit relationship, as derived from multiple linear regression. (C) Results of

a sensitivity analysis performed on the training data sub-set for the ANN incorporating all candidate variables. Refer to Table 1 for variable

abbreviations. ‘L’ indicates a ‘lagged’ variable (see Section 2). Filled bars indicate variables selected for subsequent modeling. (D) Modeled Chl

a concentrations from an ANN using variables selected by a sensitivity analysis as a function of measured concentrations (refer to Figs. 8 and

10A). Lines and statistical information as in (B).
p � 0.0001; Fig. 7B). A genetically trained ANN,

identifying nine predictor variables (8C, PSU, Kd,

NOx, L-NOx, NH4
+, L-NH4, PO4

3�, DO, L-Fluor) and

comprised of one hidden layer with seven PEs, did not

improve modeling of NEP values (r = 0.78,

p � 0.0001; Fig. 7C). In all networks, modeled

NEP values slightly overestimated and underestimated

measured values at the least and greatest NEP values.

ANNs predicted instances of phototrophy or

heterotrophy fairly well, with classification errors of

ca. 22% and Cohen’s Kappa values of ca. 0.55 � 0.01

S.E. [Note: the kappa statistic denoted the degree of

concurrence between calculated-modeled sorting of

trophic classifications; values greater than 0.75

indicated strong agreement whereas values between

0.40 and 0.79 indicate fair to good agreement;

SYSTAT 10, 2000]. An ANN, utilizing 10 input
variables (Depth, L-Depth, Fluor, L-Fluor, DO, L-DO,

L-Precip, L-PAR, L-Temp, and L-Turb) and 4 PEs

developed via sensitivity analysis, predicted the

proper classification for ca. 69 and 85% of photo-

trophic and heterotrophic instances, respectively. A

genetically trained ANN, utilizing 13 inputs (Wnd Dir,

L-Wnd Dir, PAR, Depth, PSU, Turb, Fluor, DO%, L-

DO%, L-Wnd Spd, L-Depth, L-Temp, and L-Hetero-

trophic class) and 2 PEs, produced similar results

(Table 2).

3.3. NIDs and Garson’s algorithms

Based on final weight values, NIDs of the best

predictive networks for the Neuse and Trout Rivers

(Figs. 8 and 9, respectively) indicated extremely

complex interactions among abiotic and biotic
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Fig. 7. (A) Results of a sensitivity analysis performed on the

training data sub-set from the artificial neural network (ANN)

incorporating all candidate variables for the Trout River. Refer to

Table 1 for variable abbreviations. ‘L’ indicates a ‘lagged’ variable

(see Section 2). Filled bars indicate variables selected for subsequent

modeling. (B) Modeled net ecosystem production (NEP) values

from an ANN using variables selected by a sensitivity analysis as a

function of actual values (refer to Figs. 9 and 11A). (C) Modeled

NEP values (B) from an ANN derived using genetic training as a

function of measured values (refer to Fig. 11B). Dashed lines

represent a 1:1 relationship. Solid lines and corresponding statistical

information represent the ‘best’ fit relationship, as derived from

multiple linear regression.
variables. No variable in either network had a

consistent magnitude or direction (positive or nega-

tive) of impact among PEs within the input-hidden

layers. Rather, the apparent strong positive influences

of PSU and DO and PAR, L-Temp, L-DO and L-NEP

on select PEs for predicting Chl a and NEP,

respectively, were ‘counter-balanced’ by equal or

lesser negative influences of the same variables among

alternative PEs.

Based on absolute network weights of derived from

sensitivity analysis and genetic training for the Neuse

River, Garson’s algorithm denoted PSU, DO, and

nutrient concentrations to have the greatest relative

impact on prediction of Chl a concentrations (Fig. 10A

and B). For the ANNs derived from sensitivity

analysis and genetic training for the Trout River,

Garson’s algorithm denoted both contemporary and

‘lagged’ variables (Fluor, DO%, Turb, L-Turb, and L-

NEP) to have the greatest impact on prediction of NEP

values (Fig. 11A and B). No particular one (or few)

variable(s) proved to greatly influence Chl a or NEP to

the exclusion of other variables; rather multiple

variables in both the Neuse and Trout Rivers had

ca. similar relative effects.

3.4. Comparison of ANNs and MLR

The MSE for all trained ANNs was equal to or less

than that for comparable MLR models, indicating that

networks performed as well as, or outperformed all

linear models (Table 3). MLR models using trans-

formed variables did not always outperform MLR

models using non-transformed variables.
4. Discussion

An intuitive premise adopted in these modeling

efforts was that the interplay of physical/chemical

variables created environmental gradients responsible

for the transitory and spatially explicit patterns of

phytoplankton abundance and system-level produc-

tion (e.g. Dustan and Pinckney, 1989; Pinckney and

Dustan, 1990; Cloern, 1991; Klarer and Millie, 1994;

McKee et al., 2002; Millie et al., 2003, 2004; Pigg

et al., 2004). Spatial and temporal trends of sampling

sites and/or dates were evident, with differences

attributable to suites of variables arising from fresh-



D.F. Millie et al. / Ecological Indicators 6 (2006) 589–608600

Table 2

Confusion matrix, delineating the number of modeled phototrophic and heterotrophic classifications from ANNs derived using sensitivity

analysis and genetic training with the calculated classifications for the Trout River (refer to Fig. 4A and B)

ANN architecture Calculated classification Modeled phototrophic Modeled heterotrophic

Ten variables, four processing elements

derived via sensitivity analysis

Phototrophic 34 (69.4) 15

Heterotrophic 8 45 (85.2)

Thirteen variables, two processing elements

derived via genetic training

Phototrophic 40 (81.6) 9

Heterotrophic 15 39 (72.2)

Numbers in parentheses signify the percentage of correct classifications. See Section 3 for listing of predictor variables and associated Kappa

statistics.

Fig. 8. An artificial neural network interpretation diagram (7 input variables, 14 processing elements) for hindcasting chlorophyll (Chl) a

concentrations in the Neuse River. Dashed and solid lines depict negative (inhibitory) or positive (excitatory) effects, respectively, upon modeled

Chl a concentrations by synaptic weights among input-hidden-output layers. Line thickness portrays the relative magnitude of the weight. Refer

to Table 1 for variable abbreviations. ‘L’ indicates a ‘lagged’ variable (see Section 2).
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water inflows, saltwater influx/tidal influences, and/or

meteorological conditions. Chl a mirrored system-

level salinity regimes in the Neuse River; mean

concentrations were greatest in the mid- and lower

estuary where lesser turbidity, current velocities, and

nutrient loads, and greater salinity and residence times

(compared to the upper reaches) exist. Mean

concentrations were least during cool, winter months

and greatest during warm, summer months. NEP

values in the Trout River were extremely dynamic

with continuous phototrophic or heterotrophic condi-

tions often occurring over short-time intervals (days).

This alternate ‘source and sink’ for carbon is typical

for coastal estuaries (see Smith and Hollibaugh, 1993;

Caffrey, 2003, 2004) and most likely resulted from

varying tidal cycles coupled with episodic occurrences

of hydrologic discharge, water-column salinity stra-
Fig. 9. An artificial neural network interpretation diagram (11 input variab

(NEP) values in the Trout River. Dashed and solid lines illustrate negative (i

NEP values by synaptic weights among input-hidden-output layers. Line thi

for variable abbreviations. ‘L’ indicates a ‘lagged’ variable (see Section 2
tification, phytoplankton bloom events, and meteor-

ological fronts.

ANNs developed for the Trout River reliably

modeled NEP values and trophic classifications. ANNs

developed for the Neuse River performed adequately

at Chl a concentrations less than 20 mg L�1. Chl a

concentrations greater than 20 mg L�1 were dramati-

cally underestimated by all networks, likely due to one

or more reasons. Foremost, the periodicity of data

acquisition may not have been sufficient to generalize

system-level variability. Phytoplankton growth in

coastal waters is governed by interacting processes

(e.g. nutrient uptake, temperature dependence, light

availability, grazing impacts; e.g. Duarte, 1990) driven

by multiple, system-level factors (i.e., meteorological

conditions, hydrologic regime, intermittent water-

column gradients, benthic resuspension; e.g. Paerl,
les, 6 processing elements) for hindcasting net ecosystem production

nhibitory) or positive (excitatory) effects, respectively, upon modeled

ckness portrays the relative magnitude of the weight. Refer to Table 1

).
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Fig. 10. The relative share of prediction associated with abiotic/biotic variables in hindcasting chlorophyll a concentrations in the Neuse River

with an artificial neural network incorporating variables derived using (A) sensitivity analysis and (B) genetic training. Refer to Table 1 for

variable abbreviations. ‘L’ indicates a ‘lagged’ variable (see Section 2).
1988; Paerl et al., 1998, 1999; Millie et al., 2003,

2004), often interacting on short (day to week) time

scales. Consequently, the sampling interval in the

Neuse River (generally 2–3 weeks) likely did not
Fig. 11. The relative share of prediction associated with abiotic/biotic va

River with an artificial neural network incorporating variables derived using

variable abbreviations. ‘L’ indicates a ‘lagged’ variable (see Section 2).
provide appropriate resolution for the ANNs to

capture the inherent variability and magnitude of

abiotic variables and/or Chl a dynamics throughout

the system. Lee et al. (2003) noted that a minimum
riables in hindcasting net ecosystem production values in the Trout

(A) sensitivity analysis and (B) genetic training. Refer to Table 1 for
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Table 3

Mean square error derived from distinct model formulations, utilizing non-transformed and transformed multiple linear regression (MLR and

TR-MLR, respectively) and artificial neural network (ANN) architectures, for hindcasting chlorophyll a (Neuse River) and net ecosystem

production (Trout River)

Model formulation Model architecture Chlorophyll a Net ecosystem production

All candidate variables MLR 59.35 � 14.80 (=0.066) 0.72 � 0.12 (=0.558)

TR-MLR 69.46 � 15.43 (�0.001) 0.69 � 0.11 (=0.692)

ANN 53.16 � 12.14 0.66 � 0.10

Inputs derived via sensitivity analysis MLR 59.82 � 14.14 (=0.014) 0.62 � 0.11 (=0.642)

TR-MLR 71.37 � 16.42 (�0.001) 0.63 � 0.11 (=0.446)

ANN 50.38 � 11.14 0.59 � 0.09

Inputs derived via genetic algorithm MLR 58.26 � 13.99 (=0.074) 0.68 � 0.11 (=0.769)

TR-MLR 68.48 � 15.40 (=0.004) 0.69 � 0.11 (=0.801)

ANN 49.74 � 10.82 0.71 � 0.14

Refer to Section 3 for input variables of distinct model formulations. Data are means � standard error (n = 104). The significance of the

difference between paired data vectors for regressions and network architectures is in parentheses (see Section 2).
sampling interval of 1 week was necessary to

produce a data set from which an ANN could

accurately reproduce phytoplankton dynamics.

Moreover, the designated ‘lag’ effects may not

have accurately portrayed the spatial and temporal

separation of ‘cause and effect’ in phytoplankton

growth and accumulation throughout the Neuse River,

thereby decreasing the predictive capacity of the

models. ‘Lag’ effects (for the Neuse River, immedi-

ately upstream from a site and 2–3 weeks prior to a

sampling date and for the Trout River, the previous

sampling day) were selected to best typify estuarine

residence time and/or account for the impacts of

variable flows and daily tidal cycles. For networks

predicting Chl a concentrations in the Neuse River,

sensitivity analysis and genetic training selected

contemporary variables and ‘lagged’ and contempor-

ary variables, respectively. Nevertheless, selected

variables were indicative of riverine flow (e.g. PSU,

nutrient concentrations, Kd, etc.) and/or proxy

measurements for biomass (DO), indicating the

importance of hydrological forcing in regulating

phytoplankton accumulation throughout the estuary

(see Rudek et al., 1991; Mallin et al., 1993; Pinckney

et al., 1997, 1999). Interestingly, variables known to

affect phytoplankton production (PAR, Temp, Turb),

and/or act as proxy measurements for biomass (Fluor)

comprised the predictor variables for NEP in the Trout

River. Approximately one-half of the variables

selected to predict NEP in the Trout River were

‘lagged’ variables, thereby implying a non-linear,
autoregressive process for system trophic state (after

Lee et al., 2003). For ANNs modeling the onset and

magnitude of cyanobacterial blooms within the River

Murray (South Australia), Maier et al. (1998)

concluded that ‘lagged’ water-quality variables were

vital, and often superior predictors to contemporary

variables. Increasing the spatial and temporal ‘lag

effects’ (to include variables farther upstream and/or

over a greater temporal period) in models for both

estuaries neither improved network prediction nor

altered model interpretation.

Better performance of a network using the Neuse

River data set may not have been realistic. Phyto-

plankton blooms throughout the Neuse River typically

were infrequent and spatially distinct, often restricted

to the mid and lower reaches during low flow periods

when nutrient accumulation with a stagnated water-

column fuels algal growth and proliferation (Mallin

et al., 1993; Mallin, 1994; Pinckney et al., 1997,

1999). Consequently, the data sub-set with which the

ANNs were trained contained few Chl a concentra-

tions greater than 25 mg L�1. To investigate the

(overall) variation in the data, a large network (20

PEs) was trained on the entire data set for a time to

sufficiently allow data memorization (5000 epochs).

Although this network was not appropriate for

prediction, it did present a means to assess how well

the ‘best possible’ ANN for a particular data set

performed across selected data sub-sets. Greater

correspondence between measured and modeled

concentrations occurred when this network was
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applied to data sub-sets for the riverine and upper

reaches (r = 0.64, n = 64, p � 0.0001 and r = 0.71,

n = 605, p � 0.0001, respectively) than for the mid

and lower reaches (r = 0.59, n = 743, p � 0.0001 and

r = 0.55, n = 311, p � 0.0001, respectively; data not

shown). Clearly, considerable variation in Chl a

existed (more so in the lower estuary where bloom

conditions were most prevalent) that could not be

correlated to the selected abiotic variables. Given the

data set, there appeared to be a predictive ‘limit’ for

modeling Chl a with a network.

Although there is uncertainty as to whether an

untested variation in network parameters (i.e. number/

value of hidden nodes, PEs, learning rates, etc.) might

not have provided better prediction (Garson, 1991),

abiotic variables characterized differences among

sampling sites and dates and served as predictors

for the trends/patterns of both Chl a and NEP Only

physical/chemical variables routinely collected in or

analyzed for by invasive or autonomous-based

sampling programs in the Neuse and Trout Rivers,

respectively, were chosen for potential inclusion in the

networks. Obviously, one (or several) variable(s) that

would have dramatically improved network prediction

might have been excluded. Intuitively, inclusion of

variables that can act as proxy measurements for

phytoplankton abundance would increase the pre-

dictive capability for Chl a. For example, particulate

organic carbon concentrations and/or carbon:nitrogen

ratios were available within the Neuse River data set;

however, these variables were directly correlated with

phytoplankton biomass and excluded from initial

network development (see Section 2). When these

variables were introduced as predictors in a network,

the correspondence (r = 0.82, p � 0.0001) between

modeled and measured Chl a concentrations, along

with the predictive capacity of the network (r2 = 0.68,

p � 0.001) was dramatically greater than previous

ANNs. However, the absence of protocols for routine

(and inexpensive) acquisition of carbon-based vari-

ables prohibits their use as potential predictor

variables (either in addition to or to the exclusion

of other more readily obtainable abiotic variables) in

estuarine modeling efforts.

ANNs proved an attractive substitute (from MLR)

for modeling the large, complex data sets of the Neuse

and Trout Rivers. Regression analysis often is used for

predicting algal biomass based on its direct corre-
spondence with a single (or multiple) abiotic/biotic

variable(s) (e.g. Sarnelle, 1992; Brown et al., 2000;

Bachmann et al., 1996, 2001). Networks generally

outperformed MLR models (based on minimization of

MSE), denoting the apparent non-linear and/or

stochastic interactions among abiotic/biotic variables

throughout both estuaries. In theory, an ANN

encompasses the MLR model; as such, networks

should perform as well, or better, than linear models

for such complex systems due to their inherent

flexibility in dealing with the non-linear influences of

multiple variables (Scardi and Harding, 1999;

Gonzalez, 2000). This greater performance is not

surprising in a strict statistical sense; ecological data

often are not normally distributed and even if data are

transformed, MLR is not particularly successful in

modeling such data (Maier et al., 1998).

A requirement for linear regression is an a priori

knowledge of appropriate predictors for model

inclusion or exclusion. In the absence of knowledge

concerning the underlying relationships among

estuarine abiotic and biotic variables, step-wise

MLR may result in models composed of variables

having no theoretical relationship to Chl a and NEP.

However, we should not focus on whether one model

can outperform another model, but rather, address the

relative performance of the models in the absence of

known relationships (Smith and Mason, 1997). Herein

lies the dilemma of modeling meta-stable dynamics in

self-organizing systems (such as dynamic coastal

waters) that are created and stabilized through internal

interactions among scales (Perry, 1995); if predict-

able, linear relationships between physical/chemical

variables and phytoplankton assemblages existed,

modeling and forecasting estuarine biomass and

production would be straightforward (see Cloern,

2001).
5. Concluding remarks

The means to integrate accurate prediction with

interpretable system-level information is a basic tenet

of ecological forecasting. Clearly, accurate character-

ization of environmental variables used to capture the

timing and magnitude of biotic indicators is required.

Although it often is difficult to predict ‘indicator

outcomes’ within complex aquatic systems exhibiting
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vertical/horizontal variances across spatial/temporal

scales, statistical-based models can reveal consistent

‘large-number’ relationships (e.g. the association

between phosphorus and phytoplankton; Harris,

1994). Moreover, estuarine systems ‘‘. . . are suffi-

ciently close to the ‘edge of chaos’ that repeatable

system-level properties . . . do frequently emerge . . .’’,
and as a consequence, ‘‘. . . a predictable system of

self-organizing components may therefore arise . . .’’
(Harris, 1996).

Abiotic variables served as (interacting) ‘small

number’ predictors for the dynamic and often,

stochastic trends of ‘large number’ indicators (Chl a

concentrations, NEP values, and trophic classifications)

within the Neuse and Trout Rivers. Few variables

proved to greatly impact Chl a and NEP; rather, suites of

interacting physical/chemical variables indicative of

meteorological and hydrological forcing and/or proxy

measurements of phytoplankton accumulation were

selected as the best predictor variables. The ‘knowl-

edge’ of an ANN is contained in the synaptic weights

and interpreting (trained) network ‘equations’ is both

intrinsically difficult and non-sensical (refer to Eq. (1)

and Figs. 8 and 9); as such, quantitative information

concerning the absolute impact of and/or relationships

among predictor variables could not be easily obtained.

Although sensitivity analysis and Garson’s algorithm

deconvolved the relative impact of variables in

predicting Chl a and NEP, the positive/negative

direction of the variables was not taken into account

within calculations of these analyses. Consequently,

interpretation was limited to the overall magnitude of

the (relative) effect of predictor variables (see Olden

and Jackson, 2002).

Effective forecasting of the (chronic and episodic)

impacts of stressors and/or disturbances throughout

estuarine waters necessitates robust, data-assimilative

modeling approaches. Vast amounts of spatial and

temporal-intensive data are being collected within

coastal monitoring programs (often through autono-

mous sampling and analysis protocols) for the

establishment of ‘baseline’ conditions against which

to gauge ecological change (Paerl et al., 2005).

Statistical models generally are not reliable outside the

range of data used for development (Maier et al., 1998;

Karul et al., 2000). Although network development for

both systems encompassed multi-year data sets,

greater data variability than that observed here is
common for estuaries located in the southeastern USA

(e.g. during times of episodic, wide-range disturbance,

Paerl et al., 2001; Tester et al., 2003). Site-specific

ANNs incorporating such high-resolution and tempo-

rally variable data would have greater forecasting

capability than regional and/or universal models

encompassing systems exhibiting lesser variability

and/or less-diverse sampling/analytical protocols.

Clearly, site-specific networks (such as that presented

here) need to be continually ‘updated’ for realistic

characterization of biotic indicators along ecologi-

cally relevant scales and pertinent to requirements of

synoptic water-resource management (after Millie

et al., 1995).

ANNs are considered by many scientists to be ‘black

boxes’ (see Garson, 1991; Smith and Mason, 1997;

Olden and Jackson, 2002), and except for their

predictive capability, might appear to be of limited

value for ecological applications and problem solving.

The crucial ‘next step’ for routine utilization of ANNs

in modeling relevant biotic indicators and/or as a means

to discern estuarine function is the utilization of

statistical approaches or ‘rule extraction’ algorithms

(e.g. ‘if–then’ input intervals, ‘validity interval analy-

sis’, ‘data mining’, etc.; Quinlan, 1986; Andrews et al.,

1995; Thrun, 1995; Craven and Shavlik, 1996) to allow

for comprehensible network interpretation. For exam-

ple, Olden and Jackson (2002) utilized a randomization

approach to statistically assess the importance of

synaptic weights and the contribution of environmental

variables to an ANN modeling fish species richness

within lakes. Soyupak and Chen (2004) utilized a fuzzy-

logic model (based on heuristic knowledge, rather than

the input–output relations of an ANN) to approximate

the functional non-linear relationships between Chl a

concentrations and water-quality variables within a

reservoir. Such diverse approaches can improve

predictive capability while simultaneously identifying

non-additive structure in the data and simplifying the

holistic interpretation of interacting variables (Millie

et al., 1995).
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